

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS

QUALIFICATION:	BACHELOR OF SC STATISTICS	CIENCE IN APPLIED MATHEMATICS AND
QUALIFICATION CODE:	07BAMS	LEVEL: 7
COURSE CODE:	TSA701S	COURSE TIME SERIES ANALYSIS NAME:
SESSION:	JUNE 2022	PAPER: THEORY
DURATION:	3 HOURS	MARKS 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER						
EXAMINER	Dr. Jacob Ong'ala					
MODERATOR	Prof. Lilian Pazvakawambwa					

INSTRUCTION

- 1. Answer all the questions
- 2. Show clearly all the steps in the calculations
- 3. All written work must be done in blue and black ink

PERMISSIBLE MATERIALS

Non-programmable calculator without cover

THIS QUESTION PAPER CONSISTS OF 3 PAGERS (including the front page)

QUESTION ONE - 20 MARKS

A first order moving average MA(2) is defined by $X_t = z_t + \theta_1 z_{t-1} + \theta_2 z_{t-2}$ Where $z_t \sim$ $WN(0, \sigma^2)$ and the $z_t: t = 1, 2, 3..., T$ are uncorrelated.

(a) Find

(i) Mean of the MA(2)[2 mks]

(ii) Variance of the MA(2)[6 mks]

(iii) Autocovariance of the MA(2)[8 mks]

(iv) Autocorrelation of the MA(2)2 mks

(b) is the MA(2) stationary? Explain your answer [2 mks]

QUESTION TWO - 20 MARKS

Use the following data shown in the table below to answer the questions that follow.

t	1	2	3	4	5	6	7	8	9	10
Y_t	7	8	9	11	13	16	14	13	18	17

Given $X_t = m_t + R_t$ such that R_t -is the random component following a white noise with a mean of zero and variance of σ^2 and m_t - is the trend,

- (a) Estimate the trend using exponential smoothing method with a smoothing parameter $\alpha = 0.68$. [5 mks]
- (b) Estimate the trend using a centred moving average of order 4 [6 mks]
- (c) On the same axes, draw the graphs of the original set of data, detrended data (using the exponential smoothing) and detrended data (using the moving average) [7 mks]
- (d) Which estimates in (a) or (b) above is a better estimate above ((a) or (b)) and why. [2 mks]

QUESTION THREE - 22 MARKS

Consider AR(3): $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \phi_3 Y_{t-2} + \varepsilon_t$ where ε_t is identically independently distributed (iid) as white noise. The Estimates the parameters can be found using Yule Walker equations as

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = \begin{pmatrix} 1 & \rho_1 & \rho_2 \\ \rho_1 & 1 & \rho_1 \\ \rho_2 & \rho_1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{pmatrix} \text{ and }$$

$$\sigma_{\varepsilon}^2 = \gamma_o [(1 - \phi_1^2 - \phi_2^2 - \phi_3^2) - 2\phi_2(\phi_1 + \phi_3)\rho_1 - 2\phi_1\phi_3\rho_2]$$
where
$$\hat{\rho_h} = r_h = \frac{\sum_{t=1}^n (X_t - \mu)(X_{t-h} - \mu)}{\sum_{t=1}^n (X_t - \mu)^2}$$

$$\hat{\rho_h} = r_h = \frac{\sum_{t=1}^{n} (X_t - \mu)(X_{t-h} - \mu)}{\sum_{t=1}^{n} (X_t - \mu)^2}$$

$$\hat{\gamma_o} = Var = \frac{1}{n} \sum_{t=1}^n (X_t - \mu)^2$$

$$\mu = \sum_{t=1}^n X_t$$

Use the data below to evaluate the values of the estimates $(\phi_1, \phi_2, \phi_3 \text{ and } \sigma_{\varepsilon}^2)$ [22 mks]

t	1	2	3	4	5	6	7	8	9	10
X_t	13	17	15	14	19	22	20	26	32	32

QUESTION FOUR - 18 MARKS

Consider the ARMA(1,1) process X_t satisfying the equations $X_t - 0.5X_{t-1} = z_t + 0.4z_{t-1}$ Where $z_t \sim WN(0, \sigma^2)$ and the $z_t : t = 1, 2, 3..., T$ are uncorrelated.

(a) Determine if X_t is stationary

[4 mks]

(b) Determine if X_t is casual

[2 mks]

(c) Determine if X_t is invertible

[2 mks]

(d) Write the coefficients Ψ_i of the $MA(\infty)$ representation of X_t

[10 mks]

QUESTION FIVE - 20 MARKS

- (a) Verify that (max $\rho_1 = 0.5$ nd min $\rho_1 = 0.5$ for $-\infty < \theta < \infty$) for an MA(1) process: $X_t = \varepsilon_t \theta \varepsilon_{t-1}$ such that ε_t are independent noise processes. [8 mks]
- (b) State the order of the following ARIMA(p,d,q) processes

[12 mks]

(i)
$$Y_t = (1 + \phi)Y_{t-1} - \phi Y_{t-2} + e_t$$

(ii)
$$Y_t = Y_{t-1} + e_t - \theta e_{t-1}$$

(iii)
$$Y_t = 5 + e_t - \frac{1}{2}e_{t-1} - \frac{1}{4}e_{t-2}$$

(iv)
$$Y_t = 0.8Y_{t-1} + e_t + 0.7e_{t-1} + 0.6e_{t-2}$$